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MMract-A theoretical treatment of scattering of electromag-
netic surface waves from thin metallic obstacles of a semiannular
shape on the dielectric-image line is presented.

The method of treatment relies heavily on the expansion of the
totaf fields of the line in terms of its comulete set of discrete and
continuous modes which in turn is fully derived.

I. INTRODUCTION

sURFACE-WAVE transmission lines

class of open guiding structures that

form a general

appears to have

much potential for the provision of continuous-access

guided communication (CAGC) on ground transporta-

tion systems such as railways, highways, and monorails.

Various experimental and theoretical studies have been

performed in recent years; for example, Gallawa et al. [1]

have reported an extensive investigation of the Goubau

line for two-way continuous communications. More re-

cently, Beal et al. [2] have given a brief review of the

subject with the definition of CAGC extended to include

guideway obstacle detection, sometimes referred to as

“guided radar.”

Even in present railway systems general obstacle de-

tection leaves much to be desired, but for high speed

systems of the near future and for automated highways,

some more satisfactory method of obstacle detection must

be developed. In a guided radar scheme, an obstacle is

detected either by the reflected signal on a surface-wave

guiding structure installed on the track, or by the trans-

mission loss of signals generated by transponders along

the line. The t~vo types of operation are described in detail

in ~2]–[4~ where other references are also listed.

Guideway obstructions can be broadly classified into the

following.

1) Dielectric Obstacles: These include landslides and

snowslides which might be more appropriate to detection

by their transmission loss. The scattering problem asso-

ciated with these obstacles will be treated in a subsequent

paper.

2) Metallic Obstacles: These are primarily preceding

vehicles, which could be detected by the reflected signals

produced on the installed surface-wave structure.
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In this paper we present a theoretical approach to the

problem of a metallic obstacle close to a surface-wave

transmission line and derive expressions for the reflection

and transmission coefficients, and the radiated power. The

only previous detailed work on this subject appears to be

that by Gillespie and Gustincic [5], [15] and Gillespie

[6], for the Goubau line and a planar line, while Duncan

and DuHamel [7] have reported some experimental

measurements on obstacles near a dielectric-image line, in

which the ultimate aim was the radically different one of

influencing the radiation pattern of surface-wave antennas.

We concentrate here on the dielectric-image line which

is taken as a convenient representative of a wide range of

possible practical guiding structures. Similarly, we con-

centrate on highly idealized obstacles consisting of thin

plane metallic sheets which yet can be considered to give a

useful approximation to the reflection coefficient produced

by a prece~lng vehicle. The approach used here consists of

the expansion of the total field” on the line in terms of a

complete set of eigenmodes which include both the dis-

crete and continuous spectra. The method is applicable to

any line for which this complete set of eigenmodes is known

or can be derived.

The theoretical steps followed to obtain the surface-

wave reflection coefficient are as follows.
1) A complete set of orthogonal eigenmodes is obtained

for the dielectric-image line. This includes both a discrete

and a continuous spectrum of modes.

2) The fields excited by an arbitrary source are derived

in terms of the above set of eigenmodes. The C,reen’s dyad,

defined later, is constructed from these fields.

3) An integral equation for the unknown current dis-

tribution on the obstacle surface is obtained in terms of the

Green’s dyad. A numerical solution of this equation for the

current leads to the derivation of reflection and transmis-

sion coefficients of the surface wave.

H. MODE SPECTRA OF THE

DIELECTRIC-IMAGE LINE

It is known that the eigenmodes of any open waveguide

contain both discrete and continuous spectra. Any single

mode of these spectra satisfies the source-free Maxwell’s

equations and the appropriate boundary conditions of the

structure. It is important to notice that if the radiation

condition is enforced at infinite dktances from the wave-

guide, only the discrete modes (or surface-wave modes)
Egypt
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enforced. This fact has been realized by Shevchenko [8]

who replaced the radiation condition by a less stringent

one that requires only the finiteness of the fields at infinity.

Using this approach, he has indicated a method of deriving

the complete set of eigenmodes for an open structure. We

apply this method here to the dielectric-image line and

obtain both the discrete (surface-wave) and the con-

tinuous eigenmodes. It is worth mentioning that Snyder

[9] has dealt with the problem in connection with the di-

electric rod, where the author identifies the continuous

modes with the fields of a scattered incident plane wave of

which a prior knowledge is available. The present formu-

lation is an alternative one which does not require such a

knowledge.

The fields on the dielectric-image line can be expressed in

terms of the scalar longitudinal electric and magnetic

fields, e. and h,, which in turn satisfy the Helmholtz

equation. We seek a solution characterized by a transverse

wavenumber K in the air region, with an mth harmonic in

the @direction [Fig. 1 (a)]. Hence, apart from a common

factor exp ( –j~z), we write for the fields:

eg(p,o) = AJ~( Sp) sinm~

h. (P~4) = BJm (~P) Cos v@, for O < P < PO (la)

and

e. (p,@) = [VJ7m(2) ( K/I) + WeHm[l) ( KP)1sinm@

h (w$) = [vh~m(z)(K/J)+ ~fim(l) (K12)] COS ??@,

for P > PO. (lb)

It should be noted that (1) applies to both discrete and

continuous mode spectra as will be seen later in this

section.

A, B, V., We, Vh, and Wh are COIIStStntS for a given K.

The wavenumbers S and ~ are given by

6(K) = (1 – K2)’/2

S(K) = (G – 1 – K2)1/2

where e, is the relative permittivit y of the dielectric.

Notice that all wavenumbers are normalized with respect

to that of free space k,. Consequently, all lengths will be

normalized with respect to l/kO. In addition, we shall

normalize impedances with respect to 120m, the free-space

plane wave impedance.

The transverse fields can be obtained from the longi-

tudinal components through well-known formulas (see

Appendix I). The continuity of e., e4, h., and ho provides

four equations relating the six constants A, B, V,, W.,

V~, and Wh. The last four can then be expressed in terms of

A and B as follows:

V. = a(K)A + b(K)B

W. = c(K)A + ct!(K)B

Vh = b(K)~ + e(K)B

W. = d(K)A +f(K)B (2)

where the quantities a, b, c, d, e, and ~ are given by [4]

Lp.../.Er..
1

Z:zl z~z2

I 1

(a) (b)

Fig. 1. The dielectric-image line.

Jrn(Spo)Hm’(l) (kPO) – (crK/J$Jm’ (f$Po)~m(l) (KPo)
23(K) =

D

m/3e, -l
b(K) = – ~ ~2— ~.(~po)~.(’) (KPo) /D

C(K) =

J~(SpO)H~”2) ( Kpo) – (c, K/AS’)Jm’ (SpO)H~’2) ( KpO)

D

mb e, — 1
d(K) = ‘—

Kpo 82
Jm(LSpO)Hrn(2) (KPo) /D (3)

and e(K) and f(K) are the same as U(K) and C(K), respec-

tively, but with the term c, in the latter expressions re-

placed by unity. The prime on the Bessel functions J~ and

H% denotes differentiation with respect to the argument. D

is the Wronskian of the Hankel functions H~(l) and H~(2J

and is given by

D(K) = H~’~l) ( KPO)HTm(2) ( Kpo) – ~m(l) ( KPO)Hm’(2) ( Kpo)

= 4j/TKf30.

A. The Discrete Spectrum

The radiation condition states that [10]

lim ?“’/2(t)#/&” + jh)+) ~ () (4)
r-cc

where r = (P2 + .Z2)112and + is any scalar field quantity.

This means that the field should decay in the far zone as

fast, or faster than, a diverging spherical wave. If the

fields ea and h, in (2) are to satisfy the radiation condition

(4), then we should have

W.(K) = W.(K) = O with Im (K) <0 (5)

which leads to fields that are evanescent in the transverse

dhection. These constitute the well-known surface-wave

modes of the structure. Using (5) in (2), we obtain the

dispersion equation for these modes as

C(K)f(K) = cZ2”(K). (6)

By use of (3), it can be easily verified that (6) is equiva-

lent to that obtained by Elsasser [11] for surface-wave

modes on the dielectric-image line.

B. The Continuous Spectrum

We notice that the radiation condition (4) cannot be

satisfied by any modes other than those for which (5) is
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valid. Hence, it is not possible to obtain the eigenmodes of

the continuous spectrum while retaining that condition.

Following Shevchenko [8], since the radiation condition

is not a necessary one, we relax it into a less stringent one

that requires only the finiteness of the field of an eigenmode

at infinity. This is given by the following:

lim pi/’* = finite. (7)
P- -

Condition (7) is satisfied by any mode with a purely real

value of the transverse wavenumber K [see (lb)]. These

modes, which may be termed “pseudomodes)’ [S], con-

stitute the continuous spectrum of the structure and their

fields extend to infinit y, but remain finite, in the transverse

direction.

Since we have only four homogeneous equations with six

unknowns in (2), some ratio, for instance B/A, is left free

to assume any value whfle A or B may be assumed as

unity. This suggests that there are basically two types of

pseudomodes to be arbitrarily defined.

C. Orthogonality Conside~ation

Snyder [9] has defined the two types of pseudomodes

by effectively choosing W. = O and Wk = O, respectively.

Alternatively, we have found it convenient to use the

following definition. Type “a” pseudomodes are charac-

terized by A = 1 and B = O, and type “b” pseudomodes

are characterized by B = 1 and A = r ( K), where r(K) is

chosen such that these two types of modes are mutually

orthogonal for any pair of transverse wavenumbers K and

K’. The quantity r(K) is related to the coefficients a ( K),

b(K)” .- of (3) as [4]

r = – (bc + de)/(ac + bd)

—— – (ad+ bj)/(ac + bd) (8)

where the independent variable K has been omitted in (8)

for convenience. Using the preceding definitions in (2) we

obtain the coefficients V., W., Vhj and wh as

Ve=a We=c Vh=b and W~=d (9a)

for type “a” pseudomodes and

V. = d(b’ – ae)/(ac + bd)

W. = b(d’ – cj)/(ac + bd)

Vh = – Ve. c/d

and

W~ = – W.. a/b (9b)

for type “b” pseudomodes where the independent variable

K has again been dropped. The following orthogonality re-

lationship can be obtained in a straightforward, although

elaborate, procedure (see Appendix II) :

/
e,(K) X X h,(K’). zdA = ~,(K)6(K – K’)

A

with

N,(K) = Y [Vhwh + V.WL (lo)

A is the transverse cross section and the subscript Y refers

to the type of pseudomodes involved (’(a” or “b”). The

implicit dependence ~f the fields on p and 4 is to be under-
stood. Also, the V’s and W’s are functions of K. ,

D. Excitation by an Arbitrary Source Distribution

The fields (E, H) produced by a given distribution of

electric and magnetic currents (J, M) which lie between

the transverse planes z = Z1and z = a [Fig. 1 (b)] can be

expressed in terms of the complete set of modes of the line.

It is significant to realize that the problem is now es-

sentially the same as that of field excitation in closed wave-

guides, for which a complete set of discrete modes exists

(e.g., [12,sec.5.6]). Thus the fields (E,H) are expanded in

terms of the eigenmodes of the line and the coefficient of

excitation of each eigenmode is obtained by the application

of the Lorentz reciprocity theorem, along with the mutual

orthogonality relationships among these modes. The re-

sults are stated below.

+ ~ /md@,+(K) (e.*(K), /b*(K))
~=a o

.exp (%j~(K)2) (11)

where the first summation is over the finite number of

discrete modes. The + superscript refers to the regions

z >22 and z < z1, respectively, with z’ > z1. The subscript

r refers to type “a” or type “b” pseudomodes over which

the integration is taken. The excitation coefficients An+

and B# ( K) are given by

/
Am+ = (J.E.7 + M-H.%) dV/2Nm (12a)

v

and

\
B,*(K) = (J. E,T(K) + M. H,+(K)) dv~~fV.(K) (12b)

v

where Ej.* ( K) = e,+(K) exp (%@(K) Z), and Similar in-

terpretations exist for H,+ (K), En+, and Hn+.

The normalization factor N,(K) is defined in (10) and

N. is the corresponding quantity for the nth discrete mode.

III. THE SEMIANNULAR METALLIC

OBSTACLE

A. Formulation

The geometry of the problem is shown in Fig. 2. The

incident wave on the line is the dominant HEu mode which

is assumed to be the only surface-wave mode supported by
the line. As the face of the obstacle fits the coordinate

system and extends fully over the range of @ (O < 4< m),

the scattered fields are expected to have the same depend-

ence on ~ as the incident fields, i.e., a sin 4 or cos 6 vari-

ation. Hence, in the subsequent analysis, the @dependence

of the fields can be omitted.

The method of solution adopted here is to form an
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A CURRENT ELEMENT,/

I&er

f

THE DIELECTRIC IMAGE LINE

Fig. 2. Semiannular obstacle al)ovethe dielectric-image line.

equivalent problem where the obstacle is replaced by an

electric current sheet that lies on the closed boundary

surface 8 of the obstacle. This current sheet, so far un-

known, is determined such that the total tangential

electric field (incident plus scattered due to the current

sheet ) at the surface N is equal to zero. This method can be

applied, in principle, to any obstacle of arbitrary shape,

such as a thick perfectly conducting sheet. However, the

numerical solution of the resulting equations will be ex-

tremely complicated. Hence, we shall concentrate on a

very thin obstacle such as that of Fig. 2 which we can

replace, in the limit of infinitesimal thickness, by a single

current sheet of electric current in the plane z = O. Thk

current will satisfy the edge conditions, i.e., a zero normal

current at the edges. Since the obstacle is assumed to

have an infinitesimally small thickness, the boundary

conditions requiring zero tangential electric fields at both

sides of the obstacle reduce, in the limit, to the single

boundary condition of the vanishing of that field only in

the plane z = O and over the current sheet.

Let us assume that a Green’s dyad operator G (p,p’,z)

can be found that relates the scattered electric field E, to

the equivalent current sheet J as follows:

Es (plZ) =
/

G (p,p’,.Z) .J(p’) d~
A

—
/

– 7r/~ /G (P,P’,2) .J(p’) (i/J’ (13)
#

where the factor m/2 arises from an implicit integration

over 4 of sin2 ~ or COS2O. The range of p’ is over the ob-

stacle surface. The Green’s dyad operator defined by (13)

is seen to be different from the conventional Green’s dyad

function, such as that used by Collin [12,p.198], but it has

the merit that it can be constructed directly from (11) and

(12), when specialized to the case of impulsive sources.
NTOWlet J(p’) be expressed in the following form:

J(p’) Q [Io(p’) @+ I+(P’) +1/(~P’/2)

= Z(p’) /(7rp’/2)

where Z has the dimensions of an ampere. When the pre-

ceding equation is substituted in (13) we get Es (P,z) in the

simple form

E,(p,.z) =
!

G (p,p’,Z) .Z(p’)dp’.
#

From this ~oint onwards. we shall dro~ the lomzitudinal

components of G and hence retain only the transverse

components. The vanishing of the total tangential electric

field on the metallic obstacle reduces to

JG(p,p’) oZ(P’) dp’ = – ei~.(p) (14)

where both p and p’ lie on the obstacle surface. It is under-

stood that z is set equal to zero since the fields are at the

obstacle surface.

To solve (14) for the unknown current distribution

Z(P’) we expand this into a summation of a complete set of

vector functions ~, (p’), ~ = 1,2,0 ”., each of which satisfies

the edge condition that the radial current is zero at

p’ = h and h + W; a suitable set of sine and cosine func-

tions was used in the computation. Thus we have

Z(p’) = ~ a,fz(p’). (15)

Substituting in (14) we get

~ ai~G(p,p’) .fi(p’)dp’ = – eino(p) . (16)
i

To obtain the coefficients ai, i = 1,2,0 ... we scalar mul-

tiply (16) by a complete set of vector test functions and

integrate over p. If we choose the same set of functions that

have been used for the current distribution, we end up with

the following system of linear equations:

~ ~i~ (.fdP) , G (P,P’) “jL(P) ) dP’
‘2

—– – (f~(p)I ein.(P) ),
j + 1,2,... (17)

where, in general terms,

(a(p), b(p) ) Q ~’+wa(p) .b(p)dp.
h

This system of equations is infinite. However, we truncate

the sum in (15) at a suitable number of terms N, and the

finite system of equations thus obtained can be solved

numerically to yield the coefficients a%,i = 1,2,. . ● ,N, and

hence the current dktribution. The surface-wave reflection

coefficient is given as

R = – *(Z(P), ei..(p) )

= – * ~ ai{-f,(p), ein.(p) ) (18)

by virtue of (12a) and the assumption th~t einc (p), which

is the incident electric field, is normalized such that

It is important to notice that expression (18) for R is, in

effect, a stationary one with respect to the current dis-

tribution under the conditions given by (17). This can be

easily verified by use of the Rayleigh–Ritz method [12]

to show that the preceding conditions are exactly the same
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as those that render the following expression for R a

stationary one:

R = ~(Z(p),ei~c(p) )’/(Z(p), E,(p) ) (19)

where E.(p) is the scattered electric field by the assumed

current distribution.

B. The Green’s Dyad G (p,P’)

The Green’s dyad G (p, P’) is obtained from the trans-

verse electric field given by (11) and (12) under the special

case where Z1 = 22 = O, AZ = O, and J is a unit source

given by

J(p’) = JPp + Jd@

with

J, = J@ = ti(p – p’)~(z)/(7rp’/2). (20)

Upon substituting in (11) and (12), we obtain

G(p,p’) = ~ & eke,
t

* dK

+ ~ J 2N, (K)
‘e, (p,K) e.(p’,K) (.21)

,= ~

where e,(p) and e, (p, K) are the transverse electric field of

the dkcrete and continuous spectra, respectively. The

second summation is over the tll”() types of pseudomodes.

In a matrix form, the Green’s dyad has four elements,

namely, G,,, GP4, G+,, and G4@,where, for example, G,e

denotes the radial electric field produced by a unit cir-

cumferentially directed Z source

explicitly by

GP~(p,p’) = ~ eg,(p) e,$(p’) /2AJ%
t

pm

and is therefore given

+ S ~ dKe,P(P,K)e,@(P’,K) /~~,(K) , (22)
, 0

For a practical line, the number of discrete modes is just

one—the dominant mode. For a given source point p’ and

a field point p, the discrete sum in (21) is straightforward

to evaluate. The continuous sum needs to be evaluated by

integration. However, in its present form, the integrand is

oscillating too rapidly with K to allow for an accurate inte-

gration. We therefore change the integration path into

another path in the complex K plane. At this point, we

should notice that (21 ) contains eight integrations to be

performed for the four scalar components of the Green’s

dyad. Any of these integrations can be cast into the form

/

m
dK(F. (ti) + FL(K)) (93)

o

where F.(K) k analytic in the upper half-plane of K and
FL(K) is analytic in the lower half of the plane. A relation

exists between F.(K) and FL(K) which is

FU*(K) = – ~L(K*). (24)

189

h THE COMPLEX K PLANE

VI
/

I

c*
o ~~K,ko -,

I

1’‘ V2
I

Fig. 3 Change of integration path in the complex K plane,

Hence, the integrand in (22) is completely determined

by F. ( K) alone for which expressions are displayed in Ap-

pendix III. The change of the path of integration in (23) is

performed according to Fig. 3. For Fu ( K) we close the

contour in the upper half-plane and for FL ( K), we close it

in the lower half-plane. Due to the branch point at K = 1,

the contributions of FL(K) on Cl and C’, paths add up in

phase. It is then easy to show that the integration in (23)

reduces to

/
F.(K) dK +

J /
FL(K) dK – 2 FL(K) dK

—V1 —V2 c1

—
-/ /

[~u(K) – FW*(~)]dK + 2 ‘F.(.) d.. (25)

—V1 o

I’oles encircled by the contours belong to leaky modes;

i.e., they lie on the improper side of the branch cut, and

hence their residues are not included in (25). Moreover,

the surface-wave pole on the vertical axis has a zero residue

and hence zero contribution. hTow, the integrand on VI

does not oscillate rapidly with (K), and hence an accurate

numerical integration can be performed.

IV. hTUMERICAL COMPUTATION AND

RESULTS

As stated earlier, the surface-wave reflection coefficient

R is obtained by first solving the truncated system of

linear equations (17) and then using the result in (18).
The inner products in ( 17) were computed by dividing the

obstacle surface radially into a finite number of segments

and the Green’s function over each was assumed constant.

A radial length of Xo/60 for each segment proved to result

in an adequate accuracy. The singularity that arises in

calculatirw G ( O.D) was resolved bv assurninz that the ob-
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servation point has a z coordinate dz, integrating the fields

over the segment, and then putting d~ ~ O [4]. The num-

ber of the equations N in (17) was increased until a clear

convergence of R was noticed. Three to five harmonics of

the current (N = 3- 5) have been found sufficient to

produce a convergence in R. The surface-wave trans-

mission coefficient T is given by

T= I+R. (26)

This follows dkectly from matching of the surface-wave

components of the tangential electric field on both sides of

this idealized obstacle [6]. The transmitted surface-wave

power, normalized to a unit incident power, is then given

by I T 1’ and the radiated power P,ad is obtained such that

the power balance equation is satisfied, i.e.,

~r.d+\Rlz+[T12=l. (27)

Fig. 4 shows magnitudes and phases of the surface-wave

reflection coeilicient for various obstacles of height h and

width W. The surface-wave phase velocity is fixed at

97.04 percent of the free-space velocity. Wavelengths cor-

respond to a frequency of 2.05 GHz, but all lengths in-

volved can be scaled up or down according to the applied

frequency. The percentages of surface-wave power re-
flected, transmitted, as well as the power radiated by the

obstacle, are shown in Fig. .5.
The following remarks apply to Figs. 4 and 5.

1) The magnitude of the reflection coefhcient decays

with an increase of h. The phase tends to oscillate with h

but the wider the obstacle the closer is the phase to r

radians. This can be compared with the extreme case

when the obstacle covers the whole z z O half-plane and

the phase of R becomes exactly T radians.
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Fig. 5. Reflectedj transmitted, and radiated powers.

2) We notice that the radiated power Pr%~ is generally

greater than the surface-wave reflected power I R 12and is

likely to be always a significant fraction of the total

scattered power. This fact has also been reported by

Gillespie [6], in relation to rings around the Goubau line,

and experimentally observed on the dielectric-image line

by Duncan and DuHamel [7]. The relatively low values

of surface-wave reflection coefficients may set a limitation

on the sensitivity y of obstacle detection schemes for ground

transportation. Nevertheless, this can be overcome by the

use of repeaters along the guide-way to enhance the re-

flected signals [2].

3) The radiated power, plotted versus obstacle height,

tends to have a flat peak associated with a corresponding

minimum for the transmitted power I T 12 (Fig. 5). The

value of h at which this peak and minimum occur is less

for larger obstacle widths. It is interesting to notice that

the same phenomenon occurs in a more pronounced form

in the results of Gillespie and Kilburk [13], in relation to

the scattering from a conducting strip above a plane

surface-wave guide.

V. CONCLUSIONS

A theoretical approach has been described to the study

of reflections from metallic obstacles in the vicinity of

dielectric-image lines. The main feature of the method is

the use of the concept of the complete set of eigenmodes of

the guiding structure, which enables both the scattered

surface-wave modes and the radiation to be derived from

the same initial formulation of the problem. Results have
been Dresented for the ~articu~ar case of a Verv thin
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metallic annulus placed symmetrically about a dielectric-

image line, but the method is readily adaptable to metallic

obstacles of a more general nature by an extended use of

the numerical techniques applied here. Similarly, the di-

electric-image line has been used as a surface-wave trans-

mission line representative of a wide range of possible

guiding structures more appropriate to practical instal-

lations, to which this same method can be applied.

This work has been motivated by the need to develop

more refined obstacle detection schemes for use in high-

speed railways, automated highways, and other ground

transportation systems of the near future.

APPENDIX I

TRANSVERSE FIELDS

The transverse fields e, and h, are derived from the

longitudinal fields ez and hs through the formulas (e.g.,

[14])

~D

[

1
et = — V~ez + –z X Vth. 1 (Al)

ev — .@ b

where V t is the transverse gradient operator. The two

preceding equations apply for p 5 pa, i.e., inside the di-

electric rod. For p > pa, C7should be replaced by unity.

APPENDIX II

PROOF OF THE ORTHOGONALITY

RELATIONSHIP (10)

Let us assume that the vector fields of two pseudomodes

are given by

(e(K), h(K)) exp (–j&?)

and

(e(i), h(K’) ) exp ( –j@’z)

where e(K), h(K), -oO are functions of the transverse coor-

dinates only, D = (1 – .2)1/2, @’ = (1 – .’2) lIZ, and K and

K’ are the respective normalized transverse wavenumbers.

It is a routine matter to derive the following relationship

among the above fields (see, e.g., [16]) :

/
[e(K) X h(K’) – e(K’) X h(K)]”Zd~

A

(A.3)

where A is the transverse cross-sectional area over which

the fields are defined, C is a closed line contour that en-

closes A, and n is the outward normal to C. For the di-

electric-image line (Fig. 1) C consists of a semicircle

p = R h co, O < p < r taken in an anticlockwise direc-
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tion and a line closing it that lies totally on the conductive

plane. Obviously the integration over this line is zero, and

we are left with an integration over the infinitely large

semicircle. For modes which satisfy the radiation condi-

tion (4), this integration is also zero, and the orthogonality

relationship is already proved. However, for pseudomodes

which satisfy (7) instead, this is not obvious, and that

integration needs to be evaluated. We proceed to do so.

For Kp = KR + co, the following asymptotic formulas

for the field components are obtained by use of (lb),

(Al), and (A.2) :

(e,,hz) ~ [( V@,V~) exp ( –jKR + ja) + (?Va,W~)

. exp (jKR – ja) ] (2/rKR) 112. (sin,cos) mp

(e@,ltP) = [(vh, – V.) exp ( –.iKR + ja) – (W~, – We)

.exp (jKR — ja) ](2/TK3R)112. (cos,sin)nzq (A.4)

where a = mr/2 + ~/4. In (A.4) we have substituted for

the Hankel functions by the first term in their asymptotic

expansion. The field components in (A.4) are those needed

in the right-hand side (RHS) of (A.3). If the two pseudo-

modes have the same value of n?, the integration over P

is nonzero, and the RHS of (A.3) becomes

RHS of (A.3)

(A.5)

where egis the z component of e(K) e.r k the z component

of e ( K’), and so forth.

Now we substitute from (A.4) in (A.5) and after some
algebra we obtain:

RHS of (A.3)

= (KK’)-’~2
. (K2 – K’2) . lim [&( K, K’) ] (A.6)

~(D + P’) R-ca

where

LR(K,K’) =
COS [(K+ K’)R – 2a]

K+K’

. (W~Wfi’ – W.We’ – vhvh’ + V.Ve’)

+.I’
sin [(K + K’)R — 2a]

K+K’

. (W,wh’ – W.w: + Vhvh’ – V.ve’)

+ cos [(K – K’)R]

K—K1

. (Vhwh’ – Vewe’ +

+.7’
Sin [(K – K’)R]

K—Kf

. (V;we + Vewe’ –

V:w. – V,’w.)

VLW~ – vhwh’) .

(A.7)
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It is constructive to notice the similarity between (A.7)

and [8, eq.17.8]. The only surviving term in (A.7) as
R-+ w is the last one. So

lim ~R(K,K’) ejJI-13(K – K’)
R+m

. (V:w. + V.w: – V,’wh – Vhwh’) . (A.8)

As K ~ K’, we assume that@ ~ –@ so that the quantity

(K’ – K’z) / (~ + f?’) ~ – ~~. Now, substituting this result

and (A.8) in (A.6) we obtain

RHS OF (A.3) = ~ [17~W~ + V.W~]. (A.9)

To obtain (A.9) we have substituted for V:, We’, V.’, and

W~’ by V., We, – Vh, and – WL, respectively, since V. and

We are even functions of ,8, while vh and wh are odd fUn@

tions of B (or at least, this is a consistent assumption; see

(2) and (3) in the text).

Equation (10) in the text is obtained directly from a

combination of (A.3) and (A.9).

APPENDIX III

EXPRESSIONS FOR Fu (K) IN (23)

The Green’s dyad has four scalar components, namely,

G,,, G,,, G,,, and Gvw. To each there are associated two

expressions for Fu ( K) corresponding to the “a” and ‘%”

type pseudomodes. Expressions of Fu ( K) are obtained from

combinations of (21), (23), and (A. 1). Thus we have

FVPP(K) = * X1(P) {xl(i) + X-2(P’) }
b~ ( K)

f7u~P(K) = ~
4TN(K)

Y, (p)

Fuw( K) . ~
4TN(K)

.x (P)

X1(P’) + X’2(P’) ]

Y,(p’) + Y,(p’) }

and

FVW(K) = ‘K Y,(p) { Y,(P’) + Y2(P’) } (A.1O)
47T/3(K)N(K)

where

X,(p) = W.HI’(’) (KP) – W&I(l) (KP)/K~(K)P

Xz(p) = V&L’(2) (Kp) – V#l(2) (Kp)/Kf?(K) p

y,(p) = W@I’(l) (Kp) – B(K) WJ71(1J (Kp) /Kp

and

Y,(p) = V&I’(2) (Kp) – B(K) V&I(2) (KP)/KP. (All)

We notice that the coefficients V., Vh, We, and wh are

functions of K. The preceding expressions for F.(K) belong

to “a” or ‘%” pseudomodes according to whether the

coefficients V., vh, We, and Wh belong to “a” or ‘%”

pseudornodes. These are given by (9a) and (9b) in the

text.
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