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Scattering of Surface Waves By Metallic Obstacles
on the Dielectric-Image Line

SAMIR F. MAHMOUD, MEMBER, 1EEE, AND JOHN C. BEAL, MEMBER, IEEE

Abstract=—A theoretical treatment of scattering of electromag-
netic surface waves from thin metallic obstacles of a semiannular
shape on the dielectric-image line is presented.

The method of treatment relies heavily on the expansion of the
total fields of the line in terms of its complete set of discrete and
continuous modes which in turn is fully derived.

I. INTRODUCTION

URFACE-WAVE transmission lines form a general

class of open guiding structures that appears to have
much potential for the provision of continuous-aceess
guided communication (CAGC) on ground transporta-
tion systems such as railways, highways, and monorails.
Various experimental and theoretical studies have been
performed in recent years; for example, Gallawa et al. [1]
have reported an extensive investigation of the Goubau
line for two-way continuous communications. More re-
cently, Beal ef al. [27] have given a brief review of the
subject with the definition of CAGC extended to include
guideway obstacle detection, sometimes referred to as
“guided radar.”

Even in present railway systems general obstacle de-
tection leaves muech to be desired, but for high speed
systems of the near future and for automated highways,
some more satisfactory method of obstacle detection must
be developed. In a guided radar scheme, an obstacle is
detected either by the reflected signal on a surface-wave
guiding structure installed on the track, or by the trans-
mission loss of signals generated by transponders along
the line. The two types of operation are described in detail
in [27]-[4] where other references are also listed.

Guideway obstructions can be broadly classified into the
following. .

1) Dielectric Obstacles: These include landslides and
snowslides which might be more appropriate to detection
by their transmission loss. The scattering problem asso-
ciated with these obstacles will be treated in a subsequent
paper.

2) Metallic Obstacles: These are primarily preceding
vehieles, which could be detected by the reflected signals
produced on the installed surface-wave structure.
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In this paper we present a theoretical approach to the
problem of a metallic obstacle close to a surface-wave
transmission line and derive expressions for the reflection
and transmission coefficients, and the radiated power. The
only previous detailed work on this subject appears to be
that by Gillespie and Gustineic [5], [15] and Gillespie
[6], for the Goubau line and a planar line, while Duncan
and DuHamel [7] have reported some experimental
measurements on obstacles near a dielectric-image line, in
which the ultimate aim was the radically different one of
influencing the radiation pattern of surface-wave antennas.

We concentrate here on the dielectric-image line which
is taken as a convenient representative of a wide range of
possible practical guiding structures. Similarly, we con-
centrate on highly idealized obstacles consisting of thin
plane metallic sheets which yet can be considered to give a
useful approximation to the reflection coefficient produced
by a preceding vehicle. The approach used here consists of
the expansion of the total field on the line in terms of a
complete set of eigenmodes which include both the dis-
crete and continuous spectra. The method is applicable to
any line for which this complete set of eigenmodes is known
or can be derived.

The theoretical steps followed to obtain the surface-
wave reflection coefficient are as follows.

1) A complete set of orthogonal eigenmodes is obtained
for the dielectric-image line. This includes both a discrete
and a continuous spectrum of modes.

2) The fields excited by an arbitrary source are derived
in terms of the above set of eigenmodes. The Green’s dyad,
defined later, is constructed from these fields.

3) An integral equation for the unknown current dis-
tribution on the obstacle surface is obtained in terms of the
Green’s dyad. A numerical solution of this equation for the
current leads to the derivation of reflection and transmis-
sion coefficients of the surface wave.

II. MODE SPECTRA OF THE
DIELECTRIC-IMAGE LINE

It is known that the eigenmodes of any open waveguide
contain both discrete and continuous speetra. Any single
mode of these spectra satisfies the source-free Maxwell’s
equations and the appropriate boundary conditions of the
structure. It is important to notice that if the radiation
condition is enforced at infinite distances from the wave-
guide, only the discrete modes (or surface-wave modes)
can be obtained [8, chap. 1]. In order to find the complete
set of eigenmodes, the radiation condition should not be
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enforced. This fact has been realized by Shevchenko [8]
who replaced the radiation condition by a less stringent
one that requires only the finiteness of the fields at infinity.
Using this approach, he has indicated a method of deriving
the complete set of eigenmodes for an open structure. We
apply this method here to the dielectric-image line and
obtain both the discrete (surface-wave) and the con-
tinuous eigenmodes. It is worth mentioning that Snyder
[9] has dealt with the problem in connection with the di-
electric rod, where the author identifies the continuous
modes with the fields of a scattered incident plane wave of
which a prior knowledge is available. The present formu-
lation is an alternative one which does not require such a
knowledge.

The fields on the dielectric-image line can be expressed in
terms of the scalar longitudinal electric and magnetic
fields, e, and k., which in turn satisfy the Helmholtz
equation. We seek a solution characterized by a transverse
wavenumber « in the air region, with an mth harmonic in
the ¢ direction [Fig. 1(a)]. Hence, apart from a common
factor exp (—jBz), we write for the fields:

e.(p,0) = AJw(Sp) sinme

he(p,¢) = BJu(Sp) cosme,  for0 < p < po (la)

and
e.(p,) = [V Hn? (ko) + WHn® (xp) ]sin me
ha(p,d) = [VilHn® (kp) + WiH P (kp) ] cos me,
for p > po. (1b)

Tt should be noted that (1) applies to both discrete and
continuous mode spectra as will be seen later in this
section.

A, B, Vo, W,, V3, and Wy, are constants for a given «.
The wavenumbers S and 8 are given by

B(x) =
S(x) =

(1 — )
(& — 1 — 2)1r2

where ¢ is the relative permittivity of the dielectric.
Notice that all wavenumbers are normalized with respect
to that of free space k,. Consequently, all lengths will be
normalized with respect to 1/ky. In addition, we shall
normalize impedances with respect to 120w, the free-space
plane wave impedance.

The transverse fields can be obtained from the longi-
tudinal components through well-known formulas (see
Appendix I). The continuity of e., e, k., and ks provides
four equations relating the six constants 4, B, V., W,
Vs, and W5, The last four can then be expressed in terms of
A and B as follows:

Ve = a(x)A + b(x)B
W, =c(x)A 4+ d(x)B
Vi =b(k)A + e(x)B

Wi =d(x)A + f(«)B (2)

where the quantities a, b, ¢, d, ¢, and f are given by [4]
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Fig. 1. The dielectric-image line.
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and e(x) and f(x) are the same as a(x) and c¢(«), respec-
tively, but with the term ¢, in the latter expressions re-
placed by unity. The prime on the Bessel functions J» and
H,. denotes differentiation with respeet to the argument. D
is the Wronskian of the Hankel functions H,® and H,®
and is given by

D (k) = Hu'V (xp0) Hu® (kpo) — Hu™® (kpo) Hu'® (xp0)
= 44 /mxpo.
A. The Discrete Spectrum
The radiation condition states that [10]
lim 2 (3y/or + jkap) — 0

700

(4)

where r = (p? -+ 22)2 and ¢ is any scalar field quantity.
This means that the field should decay in the far zone as
fast, or faster than, a diverging spherical wave. If the
fields e, and k. in (2) are to satisfy the radiation condition
(4), then we should have

Wo(x) = Wia(k) =0 with Im (x¥) <O (5)

which leads to fields that are evanescent in the transverse
direction. These constitute the well-known surface-wave
modes of the structure. Using (5) in (2), we obtain the
dispersion equation for these modes as

c(0)f(x) = &¥(x). (6)

By use of (3), it can be easily verified that (6) is equiva-
lent to that obtained by Elsasser [117] for surface-wave
modes on the dielectric-image line.

B. The Continuous Spectrum

We notice that the radiation condition (4) cannot be
satisfied by any modes other than those for which (5) is
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valid. Hence, it is not possible to obtain the eigenmodes of
the continuous spectrum while retaining that condition.
Following Shevchenko [8], since the radiation condition
is not a necessary one, we relax it into a less stringent one
that requires only the finiteness of the field of an eigenmode
at infinity. This is given by the following:
lim oY%y = finite.

p>

()

Condition (7) is satisfied by any mode with a purely real
value of the transverse wavenumber « [see (1b)]. These
modes, which may be termed ‘‘pseudomodes” [8], con-
stitute the continuous spectrum of the structure and their
fields extend to infinity, but remain finite, in the transverse
direction.

Since we have only four homogeneous equations with six
unknowns in (2), some ratio, for instance B/A, is left free
to assume any value while A or B may be assumed as
unity. This suggests that there are basically two types of
pseudomodes to be arbitrarily defined.

C. Orthogonality Consideration

Snyder [9] has defined the two types of pseudomodes
by effectively choosing W. = 0 and W, = 0, respectively.
Alternatively, we have found it convenient to use the
following definition. Type “a” pseudomodes are charac-
terized by A = 1 and B = 0, and type “b”’ pseudomodes
are characterized by B = 1 and A = r(x), where r(«) is
chosen such that these two types of modes are mutually
orthogonal for any pair of transverse wavenumbers x and
¥’. The quantity r(«) is related to the coefficients a(x),
b(k)--- of (3) as [4]

r = — (bc + de)/(ac + bd)
= — (ad + bf)/(ac + bd) (8)

where the independent variable « has been omitted in (8)
for convenience. Using the preceding definitions in (2) we
obtain the coefficients V., W,, V), and W, as

Ve=a We=¢ Vy=b and W,=4d (92)
for type “@” pseudomodes and
Ve = d(b® — ae)/(ac + bd)
W, = b(d® — ¢f)/(ac + bd)
Vh = - Ve'C/d
and
W, = — Wsa/b (9b)

for type “b”’ pseudomodes where the independent variable
« has again been dropped. The following orthogonality re-
lationship can be obtained in a straightforward, although
elaborate, procedure (see Appendix II):

/er(x) X X B (K) -2dA = N,()8(x — &)
A
with

2w (k)

N, (x) = 3

[VhWh + VeWe:lr- (10)
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4 is the transverse cross section and the subscript r refers
to the type of pseudomodes involved (“‘a’” or “b’). The
implicit dependence of the fields on p and ¢ is to be under-
stood. Also, the V’s and W's are functions of «.

D. Excitation by an Arbitrary Source Distribution

The fields (E, H) produced by a given distribution of
electric and magnetic currents (J, M) which lie between
the transverse planes z = z; and z = 2 [Fig. 1(b) ] can be
expressed in terms of the complete set of modes of the line.
It is significant to realize that the problem is now es-
sentially the same as that of field excitation in closed wave-
guides, for which a complete set of discrete modes exists
(e.g., [12,sec.5.6]). Thus the fields (E,H) are expanded in
terms of the eigenmodes of the line and the coefficient of
excitation of each eigenmode is obtained by the application
of the Lorentz reciprocity theorem, along with the mutual
orthogonality relationships among these modes. The re-
sults are stated below.

(E;H) = Z Ani(enizhni) exp <$.7an)

r=a¢ Y0

+ X [ aeBA0) (e (), ()

-exp (FjB(x)z) (11)

where the first summation is over the finite number of
discrete modes. The =+ superscript refers to the regions
z > mand z < z, respectively, with z; > 2z;. The subseript
r refers to type “o’ or type “b” pseudomodes over which
the integration is taken. The excitation coefficients A ,*
and B,*(x) are given by

At — / (J-EF + M-H,7) dV/2N,  (12a)
Vv

and
Bt (x) = / (J-EF(x) + M-HF(x) dV/2N.(x) (12b)

where E,*(x) = e,=(k) exp (FjB(x)z), and similar in-
terpretations exist for H.*(«), E,%, and H,*.

The normalization factor N,(x) is defined in (10) and
N, is the corresponding quantity for the nth discrete mode.

III. THE SEMIANNULAR METALLIC
OBSTACLE

A. Formulation

The geometry of the problem is shown in Fig. 2. The
incident wave on the line is the dominant HFE;; mode which
is assumed to be the only surface-wave mode supported by
the line. As the face of the obstacle fits the coordinate
system and extends fully over the range of ¢ (0 < ¢ < x),
the scattered fields are expected to have the same depend-
ence on ¢ as the incident fields, i.e., a sin ¢ or cos ¢ vari-
ation. Hence, in the subsequent analysis, the ¢ dependence
of the fields can be omitted.

The method of solution adopted here is to form an
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A CURRENT ELEMENT

OBSTACLE\l

: ]

THE DIELECTRIC IMAGE LINE

R&x

Fig. 2. Semiannular obstacle above the dielectric-image line.

equivalent problem where the obstacle is replaced by an
electric current sheet that lies on the closed boundary
surface S of the obstacle. This current sheet, so far un-
known, is determined such that the total tangential
electric field (incident plus scattered due to the current
sheet) at the surface S is equal to zero. This method can be
applied, in principle, to any obstacle of arbitrary shape,
such as a thick perfectly conducting sheet. However, the
numerical solution of the resulting equations will be ex-
tremely complicated. Hence, we shall concentrate on a
very thin obstacle such as that of Fig. 2 which we can
replace, in the limit of infinitesimal thickness, by a single
current sheet of electric current in the plane z = 0. This
current will satisfy the edge conditions, i.e., a zero normal
current at the edges. Since the obstacle is assumed to
have an infinitesimally small thickness, the boundary
conditions requiring zero tangential electric fields at both
sides of the obstacle reduce, in the limit, to the single
boundary condition of the vanishing of that field only in
the plane z = 0 and over the current sheet.

Let us assume that a Green’s dyad operator G(p,p’,2)
can be found that relates the scattered electric field E, to
the equivalent current sheet J as follows:

E.(p2) = [ Glo'2) - J(s') dA
A

W/Qf p'G(pyp’2) I (p") dp’

o

(13)

where the factor =/2 arises from an implicit integration
over ¢ of sin? ¢ or cos? ¢. The range of p’ is over the ob-
stacle surface. The Green’s dyad operator defined by (13)
is seen to be different from the conventional Green’s dyad
function, such as that used by Collin [12,p.1987], but it has
the merit that it can be constructed directly from (11) and
(12), when specialized to the case of impulsive sources.
Now let J(p’) be expressed in the following form:

J(p') & [T,(p") e + Is(p") &1/ (wp'/2)
= I(p") /(xp’/2)

where I has the dimensions of an ampere. When the pre-
ceding equation is substituted in (13) we get E,(p,2) in the
gimple form

E.(p2) = /G(p,p’,Z)'l(p')dp'-

From this point onwards, we shall drop the longitudinal

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1975

components of G and hence retain only the transverse
components. The vanishing of the total tangential electric
field on the metallic obstacle reduces to

[ 6616 a5 = ~ ewslo) (14)
where both p and p’ lie on the obstacle surface. It is under-
stood that z is set equal to zero since the fields are at the
obstacle surface.

To solve (14) for the unknown current distribution
I(p’) we expand this into a summation of a complete set of
vector functions f,(p’), 7 = 1,2,- - -, each of which satisfies
the edge condition that the radial current is zero at
o’ = hand h + W, a suitable set of sine and cosine func-
tions was used in the computation. Thus we have

I(0) = ¥ af(e). (15)
Substituting in (14) we get
3 a:[Glon) SNl = — ewlo).  (16)

To obtain the coefficients a;, ¢ = 1,2,+++, we scalar mul-
tiply (16) by a complete set of vector test functions and
integrate over p. If we choose the same set of funetions that
have been used for the current distribution, we end up with
the following system of linear equations:

z aif (fi(p), G(pp") <f.(p) ) dp’

= = <fj(P); einc(p) >) jﬁ

where, in general terms,

1,2,--- (17)

htw
(alp), b)) & [ ale) blo)dp.

This system of equations is infinite. However, we truncate
the sum in (15) at a suitable number of terms N, and the
finite system of equations thus obtained can be solved
numerically to yield the coefficients a,, ¢ = 1,2,-<+ N, and
hence the current distribution. The surface-wave reflection
coefficient is given ag

R = — 3{I(p), ewmd(p))
= 1 ai(ft(P): einc(P)>

- T2
2

(18)

by virtue of (12a) and the assumption that einc(p), which
is the incident electric field, is normalized such that

Nige = %ﬂ'f einc(P) X hinc(p>p dp = 1.
0

It is important to notice that expression (18) for Ris, in

. effect, a stationary one with respect to the current dis-

tribution under the conditions given by (17). This can be
easily verified by use of the Rayleigh—Ritz method [12]
to show that the preceding conditions are exactly the same
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as those that render the following expression for R a
stationary one:

E = 5{I(p),einc(p) ¥/ {I(p), Es(p)) (19)

where E;(p) is the scattered electric field by the assumed
current distribution. .

B. The Green’s Dyad G{(p,p’)

The Green’s dyad G(p,p’) is obtained from the trans-
verse electric field given by (11) and (12) under the special
case where z; = 2o =0, M = 0, and J is a unit source
given by :

J(o") = Jo +Jsd
with
Jo=Js = 8(p— p)o(2)/(mp'/2).

Upon substituting in (11) and (12), we obtain

(20)

1
G(pp') = 2 oN e.(p)e. (o)

+ Z [ e )er(p,@er(p’,«) (21)

where e,(p) and e, (p,x) are the transverse electric field of
the discrete and continuous spectra, respectively. The
second summation is over the two types of pseudomodes.
In a matrix form, the Green’s dyad has four elements,
namely, G,,, Gue, Ggp, and gy, where, for example, G,
denotes the radial electric field produced by a unit cir-
cumferentially directed I source and is therefore given
explicitly by

Gy (P:P,) = Z €n(p)ews (P,) /2Nz

+ 3 [ deeun (o ens (60 /2N, (). (22)
r 0

For a practical line, the number of discrete modes is just
one—the dominant mode. For a given source point p’ and
a field point p, the diserete sum in (21) is straightforward
to evaluate. The continuous sum needs to be evaluated by
integration. However, in its present form, the integrand is
oscillating too rapidly with « to allow for an accurate inte-
gration. We therefore change the integration path into
another path in the complex « plane. At this point, we
should notice that (21) contains eight integrations to bhe
performed for the four scalar components of the Green’s
dyad. Any of these integrations can be cast into the form

| a0 + Fuo) (23)
0

where F,(x) is analytic in the upper half-plane of «x and

F1(x) is analytic in the lower half of the plane. A relation

exists between F,(«) and Fr,(x) which is

F# (k) = — Fr(x*). (24)

189

THE COMPLEX K PLANE

Cz
Q|F———YK-=
Fe Kk

I
i
!
I
|
|
i
I
I
[
|
!
I
|
I
I
|
|
I

Fig. 3 Change of integration path in the complex « plane.
Hence, the integrand in (22) is completely determined
by F.(x) alone for which expressions are displayed in Ap-
pendix IT1. The change of the path of integration in (23) is
performed according to Fig. 3. For F,(x) we close the
contour in the upper half-plane and for Fy(«), we close it

“in the lower half-plane. Due to the branch point at « = 1,

the contributions of Fz(x) on C; and C, paths add up in
phase. It is then easy to show that the integration in (23)
reduces to

/ o) d:c+f Fu(x) dK—2/ Fi(x) de

—Va

- / [Fu(x) — Fu*(x)] dx + 2/ Fu(x) de. (25)

—Vl

Poles encircled by the contours belong to leaky modes;
i.e., they lie on the improper side of the branch cut, and
hence their residues are not included in (25). Moreover,
the surface-wave pole on the vertical axis has a zero residue
and hence zero contribution. Now, the integrand on V;
does not oscillate rapidly with («), and hence an accurate
numerical integration can be performed.

IV. NUAMERICAL COMPUTATION AND
RESULTS

As stated earlier, the surface-wave reflection coefficient
R is obtained by first solving the truncated system of
linear equations (17) and then using the result in (18).
The inner products in (17) were computed by dividing the
obstacle surface radially into a finite number of segments
and the Green’s function over each was assumed constant.
A radial length of Ao/60 for each segment proved to result
in an adequate accuracy. The singularity that arises in
calculating G(p,p) was resolved by assuming that the ob-
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Fig. 4. Surface-wave reflection coefficient, magnitude, and phase.

servation point has a z coordinate dz, integrating the fields
over the segment, and then putting dz — 0 [4]. The num-
ber of the equations N in (17) was increased until a clear
convergence of B was noticed. Three to five harmonics of
the current (N = 3 —5) have been found sufficient to
produce a convergence in R. The surface-wave trans-
mission coefficient 7' is given by

T=1+R. (26)

This follows directly from matching of the surface-wave
components of the tangential electrie field on both sides of
this idealized obstacle [6]. The transmitted surface-wave
power, normalized to a unit incident power, is then given
by | T |? and the radiated power Pi,4 is obtained such that
the power balance equation is satisfied, i.e.,

Prad+IR|2+IT[2=1' (27)

Fig. 4 shows magnitudes and phases of the surface-wave
reflection coefficient for various obstacles of height h and
width W. The surface-wave phase velocity is fixed at
97.04 percent of the free-space velocity. Wavelengths cor-
respond to a frequency of 2.05 GHz, but all lengths in-
volved can be sealed up or down according to the applied
frequency. The percentages of surface-wave power re-
flected, transmitted, as well as the power radiated by the
obstacle, are shown in Fig. 5.

The following remarks apply to Figs. 4 and 5.

1) The magnitude of the reflection coefficient decays
with an inerease of h. The phase tends to oscillate with A
but the wider the obstacle the closer is the phase to =
radians, This can be compared with the extreme case
when the obstacle covers the whole z = 0 half-plane and
the phase of R becomes exactly = radians.
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Fig. 5. Reflected, transmitted, and radiated powers.

2) We notice that the radiated power Py.q is generally
greater than the surface-wave reflected power | B |? and is
likely to be always a significant fraction of the total
scattered power. This fact has also been reported by
Gillespie [6], in relation to rings around the Goubau line,
and experimentally observed on the dielectric-image line
by Duncan and DuHamel [7]. The relatively low values
of surface-wave reflection coefficients may set a Hmitation
on the sensitivity of obstacle detection schemes for ground
transportation. Nevertheless, this can be overcome by the
use of repeaters along the guide-way to enhance the re-
flected signals [2]].

3) The radiated power, plotted versus obstacle height,
tends to have a flat peak associated with a corresponding
minimum for the transmitted power | T |* (Fig. 5). The
value of h at which this peak and minimum occur is less
for larger obstacle widths. It is interesting to notice that
the same phenomenon occurs in a more pronounced form
in the results of Gillespie and Kilburg [137], in relation to
the scattering from a conducting strip above a plane
surface-wave guide.

V. CONCLUSIONS

A theoretical approach has been described to the study
of reflections from metallic obstacles in the vieinity of
dielectric-image lines. The main feature of the method is
the use of the coneept of the complete set of eigenmodes of
the guiding structure, which enables both the scattered
surface-wave modes and the radiation to be derived from
the same initial formulation of the problem. Results have
been presented for the particular case of a very thin
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metallic annulus placed symmetrically about a dielectric-
image line, but the method is readily adaptable to metallic
obstacles of a more general nature by an extended use of
the numerical techniques applied here. Similarly, the di-
electric-image line has been used as a surface-wave trans-
mission line representative of a wide range of possible
guiding structures more appropriate to practical instal-
lations, to which this same method ean be applied.

This work has been motivated by the need to develop
more refined obstacle detection schemes for use in high-
speed railways, automated highways, and other ground
transportation systems of the near future.

APPENDIX I
TRANSVERSE FIELDS

The transverse fields e; and h, are derived from the
longitudinal fields e, and A, through the formulas (e.g.,
[14])

JB 1
et = o — ﬁ? [Vtez + EZ X Vthz] (A.l)
.7)8 €
ht = o — 62 [—Vthz —_ ‘B‘Z X Vtez] (A.2)

where V, is the transverse gradient operator. The two
preceding equations apply for p < py, i.e., inside the di-
electric rod. For p > po, e should be replaced by unity.

APPENDIX II

PROOF OF THE ORTHOGONALITY
RELATIONSHIP (10)

Let us assume that the vector fields of two pseudomodes
are given by
(e(x), h(x)) exp (—JB2)
and

(e(x'), h(x")) exp (—jB'z)

where e(x),h(x),-++ are functions of the transverse coor-
dinates only, 8 = (1 — )2, 8/ = (1 — «®)*2, and « and
" are the respective normalized transverse wavenumbers,
It is a routine matter to derive the following relationship
among the above fields (see, e.g., [16]) :

fA[eu) X h(e) — e(x) X h(x)]-zdA

1

B Wﬁtm X h(x) — e(<) X h(x)]-ndl

(A.3)
where A is the transverse cross-sectional area over which
the fields are defined, C is a closed line contour that en-
closes 4, and n is the outward normal to C. For the di-

electric-iimage line (Fig. 1) C consists of a semicircle
p=R— o, 0 < ¢ < r taken in an anticlockwise direc-
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tion and a line closing it that lies totally on the conductive
plane. Obviously the integration over this line is zero, and
we are left with an integration over the infinitely large
semicirele. For modes which satisfy the radiation eondi-
tion (4), this integration is also zero, and the orthogonality
relationship is already proved. However, for pseudomodes
which satisfy (7) instead, this is not obvious, and that
integration needs to be evaluated. We proceed to do so.

For kp = kR — =, the following asymptotic formulas
for the field components are obtained by use of (1b),
(A.1), and (A.2):

(esshs) = [(Ve, Vi) exp (—jrB + jo) + (We,Wa)
cexp (jxRR — ja) J(2/7xR)12. (sin,cos) me
(eoshy) = L(Va, — Vo) exp (—JkR + jo) — (Wi, — W)
cexp (JxkR — je) J(2/73R) 2. (cos,sin)me  (A4)
where a = mn/2 + 7/4. In (A.4) we have substituted for
the Hankel functions by the first term in their asymptotic
expansion. The field components in (A.4) are those needed
in the right-hand side (RHS) of (A.3). If the two pseudo-

modes have the same value of m, the integration over ¢
is nonzero, and the RHS of (A.3) becomes

RHS of (A.3)
:———W/Q—limR[(eh’—e’h)—(eh,“elh’)]
G+ e T T

(A.5)

where e, is the z component of e(«) e, is the z component
of e(«’), and so forth.

Now we substitute from (A.4) in (A.5) and after some
algebra we obtain:

RHS of (A.3)
(k)32 F; . ’
= (g2 — ). ] Lg(k A6
B R ( ) le;[ r(") ] (A.6)
where
Lu(ki) = cos [ (k + )R — 20]

k + &
¢ (WhWh/ - WeWe/ - Vth/ + VeVe,)

sin [(x + R — 2a]]
+J 7
K+ k

(WaWy — WW, + ViV — V.V.)
cos [ (xk — &YR]

U
K — K

+

S(VaWy — VWS, + VW, — Vi'Wa)

+jsin [(x — :/c’)R]
K — K

* (Ve/We + VeWe, - Vh,Wh - VhWhl)'
‘ (A7)
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It is construetive to notice the similarity between (A.7)
and [8, eq.17.8]. The only surviving term in (A.7) as
R — = is the last one. So
Hm Lz (k&) — jmd(x — «)

R—o
c(VIWe+ VI — Vi/Wi — VaWi). (A8)

As k — «/, we assume that 8/ — — 8 so that the quantity
(8 — &2/ (8 + B') — —28. Now, substituting this result
and (A.8) in (A.6) we obtain

473
RHS OT (A.3) = — (ViWr + VWil (A9)
To obtain (A.9) we have substituted for V./, W./, V., and
Wi by V., W,, — V3, and — W, respectively, since V, and
W, are even functions of 8, while V; and W are odd funec-
tions of 8 (or at least, this is a consistent assumption; see
(2) and (3) in the text).

Equation (10) in the text is obtained directly from a

combination of (A.3) and (A.9).

APPENDIX III
EXPRESSIONS FOR F,(x) IN (23)

The Green’s dyad has four scalar components, namely,
Gopy Gopy Gop, and G,,. To each there are associated two
expressions for F, (k) corresponding to the “a’” and “b”
type pseudomodes. Expressions of FF,,(«) are obtained from
combinations of (21), (23), and (A.1). Thus we have

e = M / /
Fyee(i) = 22N (o) Xi(p) {X1(p") + Xa(p")}
Fuer(x) = 1 N( ) Y1(p) {X1(p") + Xa(p")}
Fyre(x) = ™ N( )XI(P){YI(P) + Ya(p) }
and
Fuee(x) = m Yilp) {Y1(p") + Y2(p)} (A10)
where
Xi(p) = WH{D (kp) — Wi 1D (xp) /xB8(x)p
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Xa(p) = VL' ® (xp) — Viy® (xp) /kB(x)p
Yi(p) = WiHy® (xo) — B(x) WH1D (xp) /xp
and
Ya(p) = ViHy® (kp) — B(k) V1@ (1p) /xp. (A.11)

We notice that the coefficients V., Vy, W, and W, are
funetions of k. The preceding expressions for F,(«) belong
to “a” or “b” pseudomodes according to whether the
coefficients V,, Vi, W,, and W; belong to ‘““a”’ or “b”
pseudomodes. These are given by (9a) and (9b) in the
text.
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